翻訳と辞書
Words near each other
・ Moran of the Marines
・ Moran process
・ Moran River
・ Moran Roth
・ Moran Sarkar
・ Moran Shipping Agencies
・ Moran State Park
・ Moran Station
・ Moran sternwheelers
・ Moran Town
・ Moran Township
・ Moran Township, Michigan
・ Moran Township, Todd County, Minnesota
・ Moran v Pyle National (Canada) Ltd
・ Moran v. Household International, Inc.
Moran's I
・ Moran's Oyster Cottage
・ Moran's theorem
・ Moran, British Columbia
・ Moran, California
・ Moran, Indiana
・ Moran, Israel
・ Moran, Kansas
・ Moran, Texas
・ Moran, Virginia
・ Moran, Wyoming
・ Morana
・ Morana (film)
・ Morana Dam
・ Moranak Meada


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Moran's I : ウィキペディア英語版
Moran's I

In statistics, Moran's ''I'' is a measure of spatial autocorrelation developed by Patrick Alfred Pierce Moran. Spatial autocorrelation is characterized by a correlation in a signal among nearby locations in space. Spatial autocorrelation is more complex than one-dimensional autocorrelation because spatial correlation is multi-dimensional (i.e. 2 or 3 dimensions of space) and multi-directional.
== Definition ==
Moran's ''I'' is defined as
: I = \frac w_} \frac w_(X_i-\bar X) (X_j-\bar X)}
where N is the number of spatial units indexed by i and j; X is the variable of interest; \bar X is the mean of X; and w_ is an element of a matrix of spatial weights.
The expected value of Moran's ''I'' under the null hypothesis of no spatial autocorrelation is
: E(I) = \frac
Its variance equals
: \operatorname(I) = \frac w_)^2} - (E(I))^2
where
: S_1 = \frac \sum_ \sum_ (w_+w_)^2
: S_2 = \sum_ ( \sum_ w_ + \sum_ w_)^2
: S_3 = \frac (x_i - \bar x)^4} (x_i - \bar x)^2)^2}
: S_4 = (N^2-3N+3)S_1 - NS_2 + 3 (\sum_ \sum_ w_)^2
: S_5 = (N^2-N) S_1 - 2NS_2 + 6(\sum_ \sum_ w_)^2
〔Cliff and Ord (1981), Spatial Processes, London〕
Negative values indicate negative spatial autocorrelation and the inverse for positive values. Values range from −1 (indicating perfect dispersion) to +1 (perfect correlation). A zero value indicates a random spatial pattern. For statistical hypothesis testing, Moran's ''I'' values can be transformed to Z-scores in which values greater than 1.96 or smaller than −1.96 indicate spatial autocorrelation that is significant at the 5% level.
Moran's ''I'' is inversely related to Geary's ''C'', but it is not identical. Moran's ''I'' is a measure of global spatial autocorrelation, while Geary's ''C'' is more sensitive to local spatial autocorrelation.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Moran's I」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.